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Tbe problem of the existence of local classical solutions of the equations of motion of holonomic systems with 
slidipg friction is investigated. The conditions for the equations of motion to be solvable for the accelerations 
enable estimates to be obtained of the coefficients of friction, within the framework of which (from the point 
of view of the existence of solutions) Coulomb’s laws can be used to describe the dynamics of mechanical 
systems with sliding friction. 

Under certain conditions the direct use of Coulomb’s law of dry friction involves introducing friction 
forces which depend on the normal reactions, which are functions of the accelerations. It is not always 
possible to solve these equations of motion for the accelerations, and the solution is not always unique. 
Hence, for the equations of motion this does not lead to supplementing the right-hand sides at certain 
points of the discontinuity or leads to their non-unique supplementation even for autonomous 
mechanical systems with holonomic stationary couplings. 

The first phenomenon of this kind in the history of mechanics was discovered by Painleve in his 
lectures on friction [l] and was a paradox which gave rise to discussions as well as theoretical and 
experimental investigations. Problems of the dynamics of systems with dry friction can now be solved 
in regions where the right-hand sides of the equations of motion can be defined by Coulomb’s laws. 

The general theory of the motion of mechanical systems with friction was set up by [l] and was 
developed in a number of well-known papers ([2-71, etc.), in which the Euler-Lagrange principle of 
possible displacements, Lagrange’s method, and Gauss’s principle of at least constraint were extended 
to systems with friction. 

1. THE EQUATIONS OF MOTION 

Suppose we are given a mechanical system with k degrees of freedom, constrained by holonomic 
(generally speaking, retaining and time-dependent) ideal couplings with forces of sliding friction, 
added to active forces. The equations of its motion can be written in Lagrangian form 

~~-3_Qi, i=l,...,k (l-1) 

Here 4’(f) = dq’ldt are generalized velocities and To is the kinetic energy of the system in motion 
with respect to an internal system of coordinates, which is the sum T, = T + Tl + To of a positive 
definite quadratic form T of the generalized velocities in a certain region of variation of the variables 

09 4) 

T = ;.i li %j(W&P, (q#,q) = aj;(t,q)) 
r-l j-l 

(1.2) 

of the linear form of the generalized velocities 
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7; = i a;(f,s)4’ 
i-l 

and of the function To = To@, 4). The functions a&, q), a&, q), To@, q) are assumed to be continuously 
differentiable with respect to the set of arguments in the region of definition of the space @+l. 

The forces F,, acting at a point of the system with radius vectors r& q) include the active forces F;” 
and the reaction forces of the couplings, which consist of the normal-reaction forces Fr and the forces 
of sliding friction Fi : Fp = Ff+ FF+ FF. The generalized forces are calculated as the coefficients of 
M in the expression for the virtual work of the forces F,,, acting at a point of the system. They are 
linear functions in F,f and Fr with coefficients that depend continuously on t and q 

We will introduce the following notation: q = (ql, . . . , qk)T, cj = ($, . . . ,4, g”)‘, Q = (Qi, . . . , Q# 
are the vectors of the generalized coordinates, velocities, accelerations and forces, and g = (gi, . . . , 
g# is a continuous vector function 

describing generalized gyroscopic forces, the transferred forces of inertia and certain other terms. 
Taking into account the possible dependence of the generalized forces of friction Qir on the general- 
ized normal reactions of the couplings Ni, and the dependence of the latter on the generalized 
accelerations, and assuming, as is usually done, that the generalized active forces QA depend 
continuously only on the generalized coordinates, velocities and time, we can write 

System (1.1) can then be written in the form of the following equation 

A(t,q)ii=g(t,q,4)+QA(f,q,4)+QT(t,q,4,ii), (Lqv”)= (1.3) 

Here A(& q) is the matrix of the coefficients of the quadratic form (1.2) (the coefficients of inertia) 
with determinant det A(t, q) > 0 for any t, q in a certain region of Rk+‘, Q“t(t, q, 4) include the potential 
forces, the forces of radial correction, and the forces of resistance of the dampers and the medium (we 
will not give a detailed description of these forces), and QiT(t, q, 4, tj) are the generalized forces of 
sliding friction. 

2. GENERALIZED FORCES OF SLIDING FRICTION 

Suppose the couplings and generalized coordinates ql, . . . , @ are such (they can be so chosen), that 
only a change in q defines the sliding when a force of friction occurs and each of the generalized forces 
of friction QF depends explicitly on only the corresponding (one) generalized velocity 4’ and the 
normal reaction Ni (possibly depending also on other generalized velocities and accelerations). By 
Coulomb’s laws (see [2,3]), in the case of motion with greneralized velocities 4”(t) f 0, (s = 1, . . . , k,, 
1 3 k. 3 k), the generalized forces of sliding friction Q, are expressed by the following formulae 

Q,” - -flNJsgr$, (s = l,...,k,) 

in terms of the coefficients of friction (during motion) fs and the moduli of the normal reactions INS 1 
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at points where the rubbing bodies come in contact. The latter are found [5] from Lagrange’s 
equations with Lagrange multipliers 4, (j = 1, . . . , k*, k* 3 k.) for a system with kinetic energy T, 
and additional generalized coordinates q. = (4.1, . . . , cf), obtained from the initial coordinates 
after an imaginary freeing of the couplings 4.1 = 0, . . . , qf = 0 (q. = 0, ij. = 0) which give rise to the 
required reactions. Then we have 

-Q;(t,q,q+.44.) 
I 

= 

q.=0,~.=0,~*=0 

-gi’(t,q,9)-Q~(t,q,4), (j =h...,k*) 

The moduli of the normal reactions are determined by the equations INS] = 131 for sliding with 
velocity 4” over the surface 4: = 0, s = 1, . . . , K, 0 < K d k,; lNsl = d(l. j +, i2j), if .y8 is 
obtained from the sliding of mutually orthogonal reactions of the smooth couplings 4.’ = 0, q.’ = 0 

k,,i,j=k’+ l,... , k* when the body rotates around the 
over a spatial curve. 

differentiable with respect to 4. 
Thus, we have the following equation for the generalized forces of sliding friction during motion 

Q,:’ = -f,(t,qS,$) IN,(r,q,Q,~)]sgn$ when 4” * O,s= l,...,k (2.1) 

The coefficient of friction during motionf,(t, $, 4’) > 0 (for dry friction it is usually taken to be equal 
to a positive constant, but if there is a lubricant or some other liquid on the surfaces in contact and 
also when there is a change in the temperature of the surfaces or the processing on different parts of 
the surface are of different cleanliness, etc., it may be a function of the variables t, 4 and 4). 

For the remaining k, < s 6 k we will assume that there is no friction 

f, = 0, Q,T = 0 s = k, + 1,. . ., k 

The equations of motion (1.3) and (2.1) in the region # # 0, s = 1, . . . , k, can be reduced to the 
form 

ij = A-‘(r,q>R(t,q,4,ii.,~f) 

where R is the right-hand side of (1.3) with force of friction (2.1). Whenf A(fr, . . .,fk.) = 0 the latter 
are uniquely solvable for 4. Taking into account the form of the functions IN, I and the structure of the 
right-hand side of the equations, we assert that for sufficiently smallft, . . . , fk. the mapping 4 +A-’ 
(t, q)R(t, q, c&q, fl is a compressive mapping. Simple calculations using the principle of compressive 
mappings [8] show that the equations are uniquely solvable for 4 in a certain neighbourhood of each 
point (t, q, 4) for sufficiently small fi, . . . , fk. and can be reduced to the form 

ii = G(Lq,4r,f) (2.2) 

where G is a function that is continuous over the set of its arguments. 
By Peano’s theorem for any initial data from the region considered there is a locally classical 

solution of the equations obtained. Hence, in the region 4” # 0, s = 1, . . . , k., detA(t, q) > 0 the 
generalized forces of friction can be supplemented by functions which are independent of the 
accelerations ii” (if the coefficients of friction are sufficiently small) 

Q,:(t,q,$ = -f,(t,qs,gs)lN,s(t,q,9,G(f,q,4r,f))lsgn~” 

When IN, ] # 0, and ]N,(t, a) I and the other functions on the right-hand sides of the equations of 
motion are continuously differentiable with respect to q, 4, tj, the function G is continuously 
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~~erentiable with respect to the same variables (according to the theorem on implicit functions), and 
the solutions of Eq. (2.2) are unique and define the motions of mechanicaf system (1.1) [9J. 

Suppose now that the sliding velocity of the rubbing body at a certain instant of time is zero. By the 
rules of classical mechanics [3, p. 1071 we will assume that the coefficients of static frictionfl are equal 
to the coefficients of friction in motion, i.e. 

f,o(t,q9)=fs(t,4,~,0), s=l,..,, k, 

If Q”(t) = 0 for a certain value of the superscript 1 < s 6 k*, we will assume @” = 0 and we wiI.I 
c&c&ate the generalized force of sliding friction using the coefficients of static friction 

If the following inequality is satisfied 

(2.3) 

then in fact q”(t) = 0 and 

If inequahty (2.3) is not satisfied, the adoption made (namely that 4” = 0) can be discarded and 
we can assume that 

Then, in the actual motion of the system 4” # 0, since when 4” = 0 we would have obtained 

In the general case we obtain the following expression for the generalized force of sliding friction [9] 

(2.5) 

Certain constraints on the region of acceptable values of 4 in Rk of the type of dependences of the 
values of 4 on the values of t, q and 4 follow immediately from the equations of motion (1.3) of a 
system with sliding friction (2.5). 

A unique supplementation of the right-hand sides of the system of equations (1.3) can nevertheless 
lead to a non-unique supplement of the act-hand sides of the equations of motion in the form 

i.e. after solving (1.3) for 4. 

3. CONVERSIONS OF THE EQUATIONS OF MOTION 

The equations of motion (1.3) with the supplement (2.5) can be reduced to a form without using the 
conditions 4” = 0 to supplement the right-hand sides. We will put 
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N(q)+ E(l,...,k*):$ = o> 

N,(r,q,q,q)b{s~~(~):lQ,~o(r,4,s.pl s fP(r,4S)IN,~r,q,q,~)l} 

In the general theory of mechanical systems with friction Painleve made the assumption that forces 
of friction F;f can be expressed as functions of t, CYJ,Q and F/, where F: “are in turn functions of t, q, cj 
and Ft, which are independent of the law of motion” (when 4 f 0, i = 1, . . . , k*) [l, p. 241. If we 
understand this to mean that it is possible to convert the equations of motion (1.3) and (2.5) to a form 
in which N, does not depend on the generalized accelerations, the conditions dlN, 1 hiif = 0 will be 
satisfied for s = 1, . . . , k,. 

Consider the somewhat less rigid assumption 

~~(t,41alNsct,4,ci,ii)l/aiiSl < %(L4) (3-I) 

for all s EN (&&(t, q, ~$4) E Sz x Rk: 1 N,(t, q, cj, 4) 1 f 0. 
Taking into account the fact that (see [lo]) the diagonal elements of the symmetrical positive 

definite matrix A(t, q) are positive numbers, we can conclude that inequalities (3.1) are satisfied if 
1 N,(t, q, ~$4) I are independent of 4”. 

Lemma 1. If condition (3.1) is satisfied, the system of equations of motion (1.3) with the supplement 
(2.5) is equivalent (i.e. their solutions are, in a certain sense, identical) to the system of equations 

i~,%(r9q)dt = Q~"(Lq&ij) + g,(r,q,q) + Q,t(r,q,g), s ENo(r,q,q,& 

j$a,i(ryq)4i’ =~~(r,qS,01N,(r,q,q,ijlsgnQ,T0(r,q,9,ii)+ 

+s,(r,q,4)+Q.~(r,q,4), SEN(~)\ N,(r,q,d,ij) 
(3.2) 

+ QAf(r,q74), sE(l,...,k,) \ N(i) 

i~,~si(r9q)ii =gs(r9q9 4)+Q~(r,q,4X s-k, +L...,k 

I+oo$ In order to prove that the system of equations (1.3), supplemented by equations (2.9, and the system of 
equations (3.2) are equivalent, it is sufficient to show that at each point (r, q, 4) E R they detine one and the same 
set of vectors Lj.. 

Suppose 4. satisfies Eqs (3.2) for fixed (r, q, 4) E R. We will put 

with 4’ = 4f when i # s. Ifs E N ($W,,(r, q, 4, ii.) then F&j:) = IS sgn Q,“(r, q, 4,G.) and 

Then F&j:) = 14: I. By (3.1) when IN,(r, q, cj,4) I f 0 the function F&j’) locally satisfies the Lipschitz condition 
with constant L < 1. Bking the continuity of F, into account and also the fact that when (N, I = 0 the equation 
F&j’) = const holds, it can be shown that Fs satisfies the Lipschitz condition in the section [0, $1 and with constant 
L < 1. Then 
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whence it follows that F,(O) > 0. This means that 

(3.5) 

with the condition 4’ = Qf, if i # s. Hence, the right-hand sides of (3.2) and (3.1) with the supplement of 
generalized forces of friction (2.5) are identical at the point (f, q, 4, 4.) for all s E N(Q)Wo (f, q, 4, 4.). Ifs E No@, 

q, Q, tj.), then $ = 0 and inequality (2.3) is satisfied for 4 = 4.. Consequently, the right-hand sides of the systems 

of equations (1.3), (2.5) and (3.2) are identical for all s E No (t, q, 4, 4.). For s E (I, . . . , k)\N(tj) Eqs (1.3) and (3.2) 
are obviously identical. Hence 4. is also a solution of system of equations (1.3) and (2.5). 

Conversely, suppose 4. satisfies (1.3) and (2.5). Ifs E N(4) and ii: f 0 , then (3.5) is satisfied. Then F,(O) > 0 

IF,@) 1 = Ii$ sgn @I = I$1 and (3.4) still holds. Consequently, F,(q;F) > 0 , and this denotes that inequality 
(3.3) holds. Hence it follows that the right-hand sides of systems (1.3), (2.5) and (3.2) are identical for all s E N(4) 

such that ij: f 0. Ifs E N(4) and 4: = 0, then inequality (2.3) is satisfied for 4 = ii., and hence s E No (f, q, 4,ij.). 

Hence it follows that the right-hand sides of systems (1.3), (2.5) and (3.2) are identical for all s E N (4). As 
previously we conclude that cZ& is the solution of Eqs (3.2). 

Lemma 2. Suppose 4. is defined as the solution of the system of equations (3.2) or (1.3) and (2.5) at 
the point (t, q, 4) E Ct. Then, for any s E 

1. ij: # 0, sgn ij: = -sgn @ (t, q, 4, 4.) . 

N(Q) the following assertions are equivalent. 

2. Inequality (3.3) is satisfied. 

proof. Suppose 4. satisfies system (1.3), (2.5). We will assume that Assertion 1 holds. If inequality (2.3) held for 
4 = ij,, we would have 4: = 0, and since 4: f 0 this means that (2.3) is not satisfied. Hence 

Hence, taking into account the fact that a&, q) > 0, sgn ijf = -sgnQp (t, q, &cj,) we obtain (3.3). We have thereby 

established that Assertion 2 follows from Assertion 1. 
Suppose Assertion 2 is not satisfied. Then for 4 = ii. inequality (2.3) is not satisfied since, if we assumed it to 

be satisfied we would have that $ = 0 and this would contradict (3.3). Consequently, (2.4) holds (at the point (r, 
q, 4,ij.) and 8 # 0. Hence, equality (3.6) holds, whence taking (3.3) into account, we obtain sgn $ = -sgn Q,“(t, 
q, 4, 4.). Assertion 1 therefore follows from Assertion 2. 

If 4. satisfies the system of equations (1.3), (2.5) and condition (3.1) is satisfied, then, as follows from 

Lemmas 1 and 2, the inequality 

is equivalent to the conditions 

i$ f 0, sg& = -sgnQ~“(t,q,~,ij,), (s E N(i)) 

Lemma 1 shows the importance of Eqs (3.2). We will call them the equations of the dynamics of 
mechanical system with sliding friction. 

4. THE EXISTENCE OF CLASSICAL SOLUTIONS 

We will introduce the following definition: a point (t, q, 4, ij) E R x Rk is said to be singular if a 
number s E (1, . . . , k.) exists such that 4” = 0 and 

iQ,T”(t,q,cj,ij)i = f, (t,q”,O)lN,(f,q,~,;i)I 

Suppose (to, qo, t.jo, Go) is the solution of system (1.3), on the right-hand side of which there are no 
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friction forces. We will assume that there are no singular points in the neighbourhood of this point for 
any sufficiently small& s = 1, . . . , k,. Then, Eqs (3.2) retain their structure for points (t, q, 4, #) from 
the neighbourhood of (to, qo, cjo, ijo) for small f,. If, in this case 1 N,(t, q, 4, cj) 1 f 0, then, by using the 
theorem on implicit functions, we can show that the system of equations (3.2) is solvable for 4 for 
certain small values offs. 

We shall need some new notation in order to investigate Eqs (3.2) further. 
Suppose p c (1, . . . , k.} is a certain set of indices. We will denote the principal submatrix of matrix 

A byA (see PO, P. 3W, i.e. the matrix obtained fromA are discarding from it the rows and columns 
with numbers belonging to p. 

Foreachs= l,...,kweput 

I -sgnQ~“0,q,4ij), s E N \ N, 

As = sgn$, s E (l,...,k,) \ N 

0, so(k,+l ,...,k)u No 

Suppose a = (ai, . . . , a& c (1, . . . , k.) is a multi-index. We will use the following notation: 

fa e fa, * * . f& 4 4 &, . . . h, a, ii {Q,, . . . aam}, where uaa are the rows of the matrix A, 
alNal/a~a{alN,,l/a~,..., a I A&,, I/&j) where a ]iV, I /a~ are the gradients of the function IN, I with 
respect to the vector 4, and [qlv,,,@ A] is the matrix obtained from A after replacing the rows II, by 
apv,paQ in it. 

We can now establish the formula 

k 
a,(f,q)-fs(bqS,4S) 

a]N 1 
LAS (N,)=detA(t,q)(No)+ 1 ag , (4.1) 

where Cr. is the set of all combinations of { 1, . . . , k,} elements taken m at a time. Since the principal 
submatrix of a positive-definite matrix is itself positive-definite [lo, p. 4721, the determinant on the 
left-hand side of (4.1) will be non-zero if 

I/alj A(r,q)](No)IfaI~aI<detA(r,q)(N,) (4.2) 

Inequality (4.2) will always be satisfied for sufficiently small& 
We will assume that the functions Qt, Q$, fs, IN, I are continuous over the set of their arguments, 

and the matrix F(t, q) and the functions Ufi and gi satisfy the assumptions in Section 1. 

Theorem. Suppose that at a certain non-singular point (to, qo, 6, a,-,): I N&o, qo,&, cjo) I # 0, Eqs (3.2) 
are solvable for q. and the inequality (4.2) is satisfied in it for the sets of indices N(Qo), No(ro, qo, 40, go). 
A classical solution q(f) of the Cauchy problem (3.2) then exists, q(to) = qo, cj(to) = 6, defined in a 
certain interval [to, to + 6) (when t = to the right derivative D’4(t) satisfies Eq (3.2)). If condition (3.1) 
is then satisfied, a local classical solution (which emerges from this point) exists of the equations of 
motion (1.3) of the mechanical system with sliding friction (2.5). 

Proof. We choose a neighbourhood So c R x Rk of the point (to, q,-,jo, &) such that for all (r, q, 4, 4) 
E S,, the following conditions are satisfied. 

# preserve the sign 4; z 0 for any s E (1, . . . , WWo), Q?%, a#, 4) and Q?‘Oo, qo, 640) 8 E 
W~)WO, qo, 4o,cji0), preserve the sign for 8 E (~o)WO, qo, &,40) and Qs (&a 44) I < I%, 4) IN&O, qo, 
Qo, ijo) l preserve the sign for s E No(to, qo, tjo, eo). 
s E N(c&)W(to, qo,&, 40) preserve the sign for Q,” (t, q, 4; 4). 

The structure of the right-hand side of (3.2) generated by the point (to, qo,jo, go) is fixed on Sa. This 
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is possible by virtue of the assumptions that the functions considered are continuous and that the point 
(to, q4 40,&) is non-singular. 

In the first group of equations (3.2) (i.e. for s E No) we obtain 4” = 0. We will consider the remaining 
equations of (3.2) as a system of functional equations which define the implicit functions 

ijS=GS(f,q,cj), SE(~)..., k)\N,, (4.3) 

By the theorem of implicit functions, by virtue of (4.2) and other assumptions, the functions G” in 
(4.3) exist, are positive-definite and are continuous in a certain neighbourhood Cl,, c &J of the point 

(tot 4440). 
We will consider the system of equations (4.3) by adding to it the equations ii” = GS(t, q, 4) = 0, 

s E No with initial conditions q(to) = qo, cj(to) = t&. By Peano’s theorem a classical solution q(t) of this 
Cauchy problem exists, defined in a certain interval (to - 2, to + 6). 

It remains to check that the function q(t) satisfies the system of equations (3.2) in the interval 
[to, to+ 61. This is known for the first group of equations and it is obvious for the third and fourth 
groups of equations (3.2). 

For the second group, by virtue of Lemma 2, sgn ii” = sgn @(to, qo, 40, cjo), s E Nwo. Consequent- 

ly, 4”(t) f: O, sgn 4”(t) = -sgn Q,“(to, qo, 40, cjo), for t E [to, to + 61, s E NW The second group of 
equations (3.2), which define the implicit function G, along the solution q(t), reduces the third group 
of equations (3.2) when t E (@,, to + 6). Hence, it has been proved that q(t) is a solution of the system 
of equations (3.1) with second derivative g(t) continuous in [to, to + 61, and since G(fo) = G(to, qo,&) 
= D'cj(to), we have that D’4(to) also satisfies (3.1). 

Hence, we have proved the existence of a solution of system of equations (3.2). If condition (3.1) is 
satisfied, then, by Lemma 1, this solution will simultaneously be a solution of system of equations (1.3) 
and (2.5). This proves the theorem. 

Note. An advantage of the equations of dynamics (3.2) is the simpler conditions for defining their right-hand 
sides (compared with the supplement (2.5) of the equations of motion (1.3) by the rules of classical mechanics), 
which turn out to be continuous with respect to 4 E p for any 6xed (t, q, 4) E Sit. In addition, Lemma 2 shows 
that the vector of generalized accelerations ii. considered as an implicit function of (t, q, 4), defined from (3.2), 
possesses the following important property 

which ensures that 4. is continuous with respect to (t, q, 4) along specially chosen sets. Hence (bearing 
Lemma 1 in mind) we wiIl henceforth consider Eqs (3.2) of the dynamics of mechanical systems with sliding 
friction. 

5. PAINLEVB’S EXAMPLE ((11, SEE ALSO [3]) 

The heavy material points of unit mass connected by a weightless rod of length r > 0 are considered. 
One of them slides with friction along a fixed horizontal straight line Ox (its coordinate is x and the 
reaction of the axis is (ZV1, FIT)), and the other moves without external resistance in a vertical plane 
Oxy under the action of gravityg (and the reaction of the rod). The Oy axis is directed downwards and 
8 is the angle of inclination of the rod in a clockwise direction from the positive direction of Ox. The 
equations of motion of the system can be written in Lagrangian form as 

2.i!-rsin06-X12cos0+QT 

-rsinOi+ r2G=rgc0s8 
(5-I) 

The generalized forces of the normal reaction and static friction are as follows: 

. . . 
IN,@,8,81 _Id cosO-ti2sinO)-2d 

Q;ro<e,6$> = -rsineij - A2 cOse 
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By Coulomb’s laws for the force of dry dynamic friction when i # 0 

where f > 0 is the coefficient of dynamic friction. The equations of motion reduce to the form 

~*cosO-~fl(ijc0sO-02sinf3)-2$sgti 

rg cos 8 
(5.3) 

For sufficiently small f > 0 these equations are solvable for f, O 

i=c,(e,x,i),f), ii=c,(e,i,i),f) (5.4) 

and the right-hand sides Gr and G2 are continuous with respect to 8, f O, f. For any to, x0, eo, f z 0, bo, 
local classical solution of Eqs (5.4) exists, and so also of Eqs (5.1) and (5.2). The sufficient condition 
for Eqs (5.3) to be solvable for i, O is 

f<(l+cos*O)/lsinOcosOI (5.5) 

Suppose now that, at certain instants of time r > to, the equality i(r) = 0 can be satisfied by 
Coulomb’s law the conditions of equilibrium of a point on the straight line Ox will be 

O = gr-’ cosf3, i = 0, lQrro(O,O,O)i s flN,(O,O,O)l 

If IQ?%% 4 8 I. ’ f Iwe, 6 6) I, th e conditions of equilibrium break down and Qp = -f INI I sgn 
f. Taking into account the fact that when i(r) = 0 we will have sgn i = -sgn Qr”, we obtain 

Qrro(O,O,O), if X=0 and 

lQ;“<e,iAii)l S flN,(8,fiij)l 
Q~(O,x,i,B)=‘-flN,(O,i),B)lsgnQ~’(O,i),~), if _?=O and 

lQ:“<e;6,ij)l > flN,(8,fiij)l 
i-flN,(e,i46)lsgni, if _k#O (5.6) 

The sets 

N= {1}, 

1 

if i=O 

0, if i*O 

No= ;I’ 
9 

ifif ,;;;;~io~~/l>fIN I> 
7 1 I 

These inequalities do not contain 2. Hence, the equations of dynamics (of the type (3.2)) of the 
system considered are identical with the equations of motion (5.1) with supplement (5.6). Condition 
(3.1) is satisfied since d INI I /& = 0. 

Consider (4.2) as it applies to Eqs (5.1). Here 

k, =1,m=l,A2 =0 

-sgnQ,ra, X = 0, No = 0 

A, = sgti, x+0 

0 No = (1) 
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det A(r,q)(N,,) = det A(e)(N,) = 
r2 (1 + cos’ e), N = 0 
r2 

9 4, =I11 

2 C det[$$,,al,ay 
m=l as4 

A(u)]W,&,l~aI= 

Formula (4.2) has the form 

r2 >o, if N, ={I): 

I+cos2f3>flsin8cos81, if No=0 

The first of the inequalities obtained is obviously satisfied, while the second is identical with (5.5) 
and gives the sufficient condition for a local classical solution of problem (5.1) to exist for each non- 
singular initial point (xc, Cl,-,, &, 6, _& ii,), which satisfies (5.1) and such that &, cosea # & sin 9, + I&/r. 
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